Reading:
Opening the black box

Opening the black box

by omnius
August 29, 2019

 

The search for a better understanding of the processes taking place in artificial neural networks.

Rapid progress has been made in deep learning in the last few years. Neural networks, whose framework is based on the human brain, are already highly efficient when it comes to recognising patterns and structures and analysing complex data sets (such as images). Back-propagation, where target values are monitored and feedback is entered into the network, was a key factor in getting us to this stage.

What remains largely unclear today, however, is why neural networks behave in the way they do. In concrete terms, this means that while we can see that self-learning networks continuously improve their accuracy through constant training, at the micro level of individual neurons we do not know exactly why a neuron decides to ‘fire’ or not ‘fire’ in a given situation. This is referred to as black box AI.

A detailed understanding of the complex processes taking place in a neural network is the key to finding out how neural networks ‘think’. This knowledge would allow us to improve the efficiency of such networks. It would also make a crucial difference where complex and ethical decisions are involved, for example in the field of autonomous driving or medical diagnostics.

Governments and society at large are not content simply to accept the fact that AI is capable of making certain decisions. They want to know how the decisions were reached. For scientific purposes, it is also important to understand the process behind a discovery made by a neural network. More and more research projects are focusing on understanding mechanisms within neural networks in order to open the black box. This will help to usher in the widespread use of higher-performance, specialised networks, even in sensitive fields.

Read on about current trends in AI and more in our paper here

_

iStock/gremlin

Related Stories

Dezember 19, 2018

2018 Wrap-Up

by
April 25, 2019

AMCOMP 2019, Las Vegas

by
Februar 6, 2019

Car Claims Require a Data Engine

by

Unsere Produkte

End-2-End Schadenautomatisierung01

Agentic Co-Pilot 02

Reduzierung von Fehlauszahlungen 03

KI Modellierer 04

Quick Links

Warum omni:us

Karriere

Partner

Neueste Case Studies

54% Dunkelverarbeitung von globalen Maritim-Schäden
.

70% Dunkelverarbeitung Schäden Komposit
.

50% schnellere Bearbeitung komplexer Schadenfälle
mit Agentic Co-Pilot

Maßgeschneiderte KI-Modelle innerhalb weniger Wochen EU Top 10 Versicherer

Erhöhung der Regressquote & Reduzierung von
Fehlauszahlungen DACH Top 5 Versicherer

Neueste Ressourcen

Regress 2025 Benchmark Report

Regress wird zum strategischen Erfolgsfaktor – doch viele Potenziale bleiben ungenutzt.
Unser Benchmark Report 2025 zeigt, wo Versicherer heute im Regress stehen – und wie KI den entscheidenden Unterschied macht.

Kontaktieren sie uns

Neueste Ressourcen

Benchmark Report

Regress 2025

Regress wird zum strategischen Erfolgsfaktor – doch viele Potenziale bleiben ungenutzt.
Unser Benchmark Report 2025 zeigt, wo Versicherer heute im Regress stehen – und wie KI den entscheidenden Unterschied macht.

Neueste Case Studies

54% Dunkelverarbeitung von globalen Maritim-Schäden

70% Dunkelverarbeitung Komposit

50% schnellere Schadenbearbeitung mit Agentic Co-Pilot

Maßgeschneiderte KI-Modelle innerhalb weniger Wochen

Erhöhung der Regressquote & Reduzierung von Fehlauszahlungen

Unsere Produkte

01

Schaden-automatisierung

02

Agentic Co-Pilot

03

Reduzierung von Fehlauszahlungen

04

KI Modellierer